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Abstract 

It is known that the spin structure on Riemamtian manifold can be extended to noncommutative 
geometry using the notion of spectral triple. For finite geometries, the corresponding finite spectral 
triples are completely described in terms of matrices and classified using diagrams. When tensorized 
with the ordinary space-time geometry, finite spectral triples give rise to Yang-Mills theories with 
spontaneous symmetry breaking, whose characteristic features are given within the diagrammatic 
approach: vertices of the diagram correspond to gauge multiplets of chiral fermions and links to 
Yukawa couplings. 0 1998 Published by Elsevier Science B.V. All rights reserved. 
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1. Introduction 

It is nowadays admitted that the major difficulty in quantizing gravity lies in our cur- 
rent conception of geometrical spaces at very short scale. Therefore, a first step towards 
a quantum theory of gravitation may be a suitable redefinition of the geometrical no- 
tions. Due to Heisenberg’s uncertainty relations, in a quantum theory, the ordinary no- 
tion of a point disappears, so that we have to develop a geometry without any reference 
to points. This is the basic principle on noncommutative geometry, where points are re- 
placed by the algebra of coordinates, which may be noncommutative. There are many 
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possible choices of the algebra of coordinates. For example, we can replace the ordi- 
nary plane, whose coordinates satisfy xy = yx, by the quantum plane, i.e., the algebra 
generated by the relation xy = qyx for a complex number q. This leads us naturally, 
when we aim at describing the symmetries of the quantum plane, to the theory of quantum 
groups. 

Another possible choice of the algebra of coordinates lies in replacing it by a suitable 
involutive subalgebra of the algebra of operators on a Hilbert space. Then, we try to ex- 
tend, guided by the analogy with quantum mechanics, the ordinary definitions and theorems 
of differential geometry, to the noncommutative case. This is the framework of noncom- 
mutative geometry [l-6]. Since matter is fermionic, the notion that should be extended to 
noncommutative geometry is that of spin structure on a Riemannian manifold. This has been 
achieved via spectral triples in [4,7]. By definition, a spectral triple is a triple (A, V-l, D), 
where A is a usually complex involutive algebra, that stands for the algebra of coordinates, 
represented on the fermionic Hilbert space ‘7-L V is a self-adjoint operator acting on ?-I, which 
is the generalization of the Dirac operator. To provide a suitable extension of spin geometry, 
these three objects are assumed to fulfill some axioms called axioms of noncommutative 
geometry. 

Starting with a suitable class of spectral triples, we can construct gauge theories with 
spontaneous symmetry breaking. In that case, both the gauge and the Higgs fields appear as 
connections, the former on an ordinary bundle, the latter on a finite one. Accordingly, the 
spectral triples we use are products of two spectral triples. The first one encodes all data con- 
cerning the geometry of space-time and the second one is what we call ajnite spectral triple. 

In Section 2, we define finite spectral triples and give the relation between the general 
axioms of noncommutative geometry and the simplest case of finite noncommutative geom- 
etry. Section 3 is devoted to a general resolution of the equations we obtained. In Section 4, 
we introduce some diagrams that allow to classify and to construct finite spectral triples. 
Finally, in Section 5 we give some applications to model building in particle physics and 
determine the general feature of the corresponding Yang-Mills theory within the diagram- 
matic approach. 

2. Axioms for finite spectral triples 

Finite spectral triples are particular cases of spectral triples of dimension 0. The latter 
are rigorously defined within the axioms on noncommutative geometry and yield a general 
theory of discrete spaces. Among all discrete spaces, we focus on finite ones, thus the 
algebra is finite dimensional. Furthermore, we will also assume that the Hilbert space is 
finite dimensional, an infinite dimensional one corresponding to a theory with an infinite 
number of elementary fermions. Accordingly, a finite spectral triple (A, ‘FI, Do> is defined as 
a spectral triple of dimension 0 such that both A and X are finite dimensional. Using such 
a triple, it is possible to construct Yang-Mills theory with spontaneous symmetry breaking 
whose gauge group is the group of unitary elements of A, 7-1 is the fermionic Hilbert space 
and V is the mass matrix. 
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All finite dimensional involutive algebras that admit involutive representations as oper- 
taors on Hilbert spaces are direct sum of complex matrix algebras. This remark simplifies 
considerably finite noncommutative geometry and it becomes possible to give a detailed 
account of all finite spectral triples. However, to enlarge the spectrum of applications of 
noncommutative geometry, for instance to include theories with gauge groups SO(n) and 
P(n), it is convenient to consider real involutive algebras. The latter are defined as involu- 
tive algebras over R together with a real representation as operators on a Hilbert space. It is 
known that finite dimensional real involutive algebras which admit a faithful representation 
on a finite dimensional Hilbert space are just direct sums of matrix algebras over the fields 
of real numbers, complex numbers and quatemions. Therefore, we write the algebra as a 
direct sum 

where Mn (W) denotes the algebra of square matrices of order II with entries in the field 
06 = R, C or E-U. All the results pertaining to spectral triples with complex algebras extend 
to the real case with only minor modifications. Accordingly, we will focus on complex 
algebras and only list these modifications in the real case. 

In this section, we give the axioms for finite spectral triples and sketch their relations with 
the general case. Since both the algebra A and the Hilbert space ‘FI, are finite dimensional, 
all assumptions concerning functional analysis, that are necessary in the general case, are 
obviously satisfied. Thus, there is a overwhelming simplification in the formulation of 
noncommutative geometry and the seven axioms involved in [7] reduce to the four following 
ones: orientability, reality, Poincare’ duality and$rst order condition. To proceed, we fix a 
finite spectral triple (A, 7-L 27) together with a faithful and unitary representation n of A 
as operators on 7-L Moreover, the formulation of the axioms of noncommutative geometry 
involves two other operators, the charge conjugation ,7 and the chirality x that we shall 
also fix. The precise definition of these two operators will become clearer in the following 
sections. 

2.1. Orientability 

Since the noncommutative manifold defined by a spectral triple has to be oriented, we 
must specify an orientation form. In the case of an ordinary manifold of dimension n, this 
is acheived by means of a nowhere vanishing n-form y. The extension of this notion to 
the noncommutative case goes through the deep relation, in the commutative case, between 
differential forms and Hochschild homology. 

Let us now briefly recall some elementary aspects of Hochschild homology, referring 
to [lo] for a general theory. Given an associative, unital, but not necessarily commutative 
algebra A, and a bimodule M over A, we first define, for any integer n, the vector space 
T,, (A, M) as the tensor product of M by n copies of A 

T,,(d,M)=M@dA...@d. 
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Then, we define, for any n > 0, the boundary operation b,, as a linear map from T,, (A, M) 
to Tn-l (A, M) such that 

b,(m 8x1 @..-@x,,) 

=mxl ~x2~...~xXn+(-l)“x,rn~xxl @...@x,_t 

For n = 0 we set bo = 0. By definition, the Hochschild cycles Z,(d, M) of dimensional 
n are the elements of Tn(d, M) whose image under b, is zero. Now, let us consider the 
bimodule M = A 8 dot’, whose bimodule structure is given by 

Y(X c3 x’)y’ = yxy' gl x’ 

These rather abstract objects are represented as operators on the Hilbert space. Using the 
Dirac operator D, the representation n can be extended to the Hochschild cycles as 

for any x 8x’@ yl @J. . .@I yn E 2, (A, d@d’P). The previous representation of Hochschild 
cycles involves an antiunitary operator J. The latter is nothing but the charge conjugation 
that will be defined below. For the time being, we shall simply consider it as a given 
antiunitary operator since we will not use any if its specific properties. This leads to a 
natural extension of the orientability of a manifold to the noncommutative case [7]. 

Orientability. For a noncommutative geometry of dimension n (n even), the chirality x is a 
hermitian involution that commutes with n(x) for any x E A, anticommutes with the Dirac 
operator D and is the image of an n-dimensional Hochschild cycle. 

Before we focus on finite spectral triples, let us check that it holds for the ordinary 
Euclidean geometry of space-time. The latter is a compact four dimensional manifold V, 
the algebra d is the algebra Co3 (V) of cimplex valued smooth functions on V, the Hilbert 
space H is the space L’(V, S) of square integrable sections of the spinor bundle of V, D 
is the ordinary Dirac operator defined in a local chart by 23 = iypa,, yfi being the usual 
Euclidean Dirac matrices, and J is the charge conjugation of Dirac spinors. The functions 
act simply on ‘FI by multiplication and we have, for any f E C”(V), 

Since the algebra is commutative, the bimodule M involved in the definition of Hochschild 
homology is not relevant and we simply take the Hochschild cycles 2, (A, M) with M = 
A. Accordingly, any O-form is function and can be written as the image of a zero dimensional 
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cycle. Moreover, Hochschild cycles of dimension 1 give us l-forms. Indeed, starting with 
the cycle Cj $ @I f;, its image is 

that can be considered as the l-form A, cW’ if we identify xi fia, f( with A, and iy” 
with dxi”. 

At higher orders, the situation is more subtle but we can still construct, using antisym- 
metrization, some Hochschild cycles whose images are differentials forms if we identify 
iy, with dxp. In fact, for any fo, fi, . . , fn E C”(V), we define 

where the sum runs over all permutations of 1,2, . . . , n and E (a) is the signature of o . Due 
to the commutativity of Co3 (V), we check that c is a Hochschild cycle and that, thanks to 
the antisymmetrization procedure, its image is an n-form. This applies for the volume form 
that can be defined as 

dn” A dx’ A dx2 A dx3 = ;ePUpo dxCL A dx”’ A dxP A dxU. 

If we identify dxlL with iy CL, the previous relation is the definition of y5 so that y5 turns 
out to be the chirality, and it corresponds to the volume form. 

Let us give two remarks pertaining to the commutative case. First, the antisymmetrization 
procedure yields us immediately differential forms, so that we do not have to divide by 
some auxiliary fields (the so-called) “junk” defined in [3]). Secondly, we have seen that 
Hochschild cycles provide us with differential forms when represented as operators on the 
Hilbert space. Thus, it is natural to ask for an exterior derivative in this framework. More 
precisely, we would like to have some linear maps d, from Z,(A, A) into Zn+t (A, A) 
such that dn+ I o d, = 0 and such that, when represented with Dirac matrices, they coincide 
with the genuine exterior derivatives. In fact, we can set d, = Bn, where B, is Connes’ 
coboundary map [lo]. For an associative and unital algebra A, the latter is defined as a 
linear map from r, (A, A) into Tn+) (A, A) by 

&ho 8 Xl 63 . . .c3 x,) 
n-l 

foranyxo,..., x,, E A. It is easy to check that &,_I o b, + bn+l o Bn = 0. Therefore, 
B, (Z, (A, A)) is included in Zn+t (A, A). Moreover, one has &+I o B, = 0 and thus 
B, can be considered as an exterior derivative in the framework of Hochschild homology. 
Besides, in the commutative case, when we lift this coboundary operation on operators on 
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the Hilbert space using Dirac matrices, it yields the genuine exterior derivative without 
introducing auxiliary fields. Let us check it for l-forms. If A, d_x” is a l-form, it can be 
written as the image of the Hochschild cycle Ci fi @ f;, with A, = xi fi a, fi. The 
action Bt on this cycle is given by 

= c (1 @f; 63 f; - 1 @ fi' c3 f; + fi' 63 1 f; - fi' gl 18 fi). 

When we represent it, we end up with 

iy&@,f&f; - a,_f$-hfd;) 
= i~,iyd$A - +A,) = FGu dxW A dx’ 

with F pLv = $A, - a,A, and if we identify iyp with dx@. Let us note that this also works 
for higher-order forms. 

For finite spectral triples, the orientability axiom requires that x must be written as the 
image of a Hochschild cycle of dimension 0. Since all elements of To (A, A@A“P) are cycles, 
it only states that there are some elements ai, bi E A such that x = xi rt(ai)Jrr(bi)J-‘. 
Accordingly, the orientability axiom is reformulated as follows: 

Orientability (finite case). The chirality x is an hermitian involution that commutes with 
n(x) for any x E A, anticommutes with 2) and can be written as x = xi Z(xi)JX(yi)J-’ 
for some xi, yi E A. 

For the standard model, x is simply the operator of ‘FI that takes the value -1 for left- 
handed fermions + 1 for right-handed fermions. 

2.2. Reality 

To define noncommutative manifolds, we need, in this setting, a suitable notion of 
Poincare duality. A first step towards a formulation of Poincare duality in noncommutative 
geometry lies in introducing a bimodule structure on ti. Note that the bimodule structure 
is also necessary if one wants to incorporate the color sector in the Connes-Lott model [3]. 
However, this bimodule is not arbitrary and it has to fulfill the reality axiom. 

Reality (jinite case). There is an antiunitary involution J on 7-f (i.e., J” = 3-l = 3) 
that commutes with x such that for any x, y, E A, one has [n(x), Jrr(y)J-‘J = 0. 

Then we can equip 7-t with a bimodule structure. The left action is 

(x, $) E A x ‘Ft ++ x$ = n(x)+, 

and the right action is 

($9 Y) E X x A I+- Sdy*V-%. 
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This defines an (A, A)-bimodule structure or equivalently, a (A @ Aor’)-module structure 
on ‘X Note that at a mathematical level, the introduction of this operator has been motivated 
by the transition from complex K-theory to real K-theory that turns out to be necessary in 
the formulation of noncommutative spin geometry. Moreover, given a cyclic and separating 
vector in 3-1, J is Tom&a-Take&i involution that allows us to pass from A to its commutant 
A’. For the standard model, this operator is just charge conjugation. In other words, the 
Hilbert space of the finite spectral triple of the standard model is the vector space spanned 
by all fermions and antifermions and the operator J’ is the antilinear operator a fermion to 
the corresponding antifermion. 

We gave the reality axiom in the finite case only. For general spectral triples, we only have 
to change some signs in the relations involving 3, depending on the dimension modulo 8 of 
the spectral triple [7]. In the commutative case of a smooth manifold V endowed with a spin 
structure, J is the charge conjugation defined on the space of square integrable sections of 
the spinor bundle of a manifold V. 

2.3. Poincare’ duality 

For a closed Riemannian manifold V of dimension n, there is a well-known isomorphism 
between the de Rham groups HP(V) and H”-P(V) given by the bilinear map 

(fys) H 
s 

fr\*g, 

V 

where f and g are closed p and (n-p)-forms that are representatives of the de Rham groups 
HP(V) and H”-J’( V). Formulating this in noncommutative geometry is a rather difficult 
task that requires the use of Kasparov’s biinvariant theory. We refer to [2,7] for a detailed 
account of Poincart duality in noncommutative geometry. In this section, we simply give 
the axiom of Poincare duality, as stated in [7], and derive its formulation in the finite case. 
The Poincare duality axiom is the following. 

Poincare’ duality . The intersection form K,(d) x K,(d) -+ Z is nondegenerate. 

Some insights on V are given by the knowledge of the vector bundles over V through 
its K-theory that can be formulated algebraically. K,(d) is a collective notation for all 
K-groups. Due to Bott periodicity, the sequence of these groups is periodic with period 2, 
for complex algebras. Moreover in the case of matrix algebras, the group K1 (A) vanishes 
identically, so that we are left with the study of Ko(A) only. In the case of real algebras, 
the period is 8 [ 111. However, if we do not take into account the torsion (i.e. the presence 
of K-groups of type Z/22), only matters the group Kc(d). Since Ko is additive, i.e., 

N 

= @ Ko(Mn, (W)), 
i=l 

we have to compute Ko(Mn (W)) [ 121. By definition, Ko(Mn (W)) is the Grothendieck group 
of stably isomorphic classes of finitely generated projective modules over A. Recall that a 
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module over M, (i-6) is a vector space E equipped with a representation of M,,(W) which 
is said to be finitely generated if any of its elements can be written as a linear combination 
with coefficients in M,(K) of a finite number of elements of E. The additive structure is 
given by the direct sum of modules, and two such modules are said to be stably isomorphic 
if they are isomorphic after addition of a trivial module (i.e., a module that is simply a direct 
sum of reversal copies of the algebra). 

The direct sum of modules yielding only an addition, we have to define the opposite of a 
module to obtain a group. This is achieved by means of the Grothendick procedure, which 
is used to construct the additive group of integers Z out of the positive integers RJ. Thus, 
we end up with an Abelian groups, which turns out to be the free group generated by the 
class of the “smallest” modules over M,,(W). The latter is given by any nonzero projection 
in M,(K) of minimal rank, since two projections of same rank are obviously equivalent 
and since the rank of the direct sum of two projections is the sum of their ranks. Now, we 
simply have to find such a projection in the real, complex and quatemionic cases. In the 
first two cases, the solution is obvious since any matrix whose only nonvanishing entry on 
the diagonal is equal to 1 is a projection of minimal rank. Therefore such a projection has 
trace 1. In the quatemionic case, it remains true if we consider that only nonvanishing entry 
is the unity of I-U, so that it has trace 2. Finally, Kc(A) turns out to be Z* and is the free 
group generated by (pi) 1 <i <N, where pi E Mni (W) is a self-adjoint projection of minimal -- 
rank. As an additive group, it can be considered as a Z-module with basis (pi) I-+ <AI. -- 

To formulate Poincare duality for finite spectral triples, we have to compute the intersec- 
tion form n in this case. More precisely, since n is Z-bilinear form on Kc(A) x Kc(d), 
we have to compute its matrix given by nij = fl(pi , pj). To proceed, we apply the general 
definition of the intersection form as the pairing of the Dirac operator index with the two 
projections pi and pj . Finite spectral triples are even spectral triples, so that we rewrite the 
Dirac operator as 

V=M+M*, 

where 

M = $(l - x)D(l +x). 

M is a map from the space of right-handed fermions (eigenspace of x associated to the 
eigenvalue +l) to the space of left-handed fermions (eigenspace of x associated to the 
eigenvalue -l), and can be considered as a mass matrix. Using the reality axiom, the 
Hilbert space is endowed with a A 8 doP-module structure that follows us to the linear map 

Mij = n(pi)~n(pj)~-‘Mn(pi)~n(pj)~-‘. 

In fact, Mij is a map from 3-15 into Hi?, where 

?f: = ~n(pi>J~(pj>J-‘(l + X)‘FI, 

3-1$ = ~7r(pi)Jn(pj)J-‘(l - X)X. 
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Both spaces being finite dimensional, the index is easily computed and we get 

Index(Mij) = dim(7-f:) - dim(‘?$). 

Since x commutes with n(pi) and Jn(pj)J-‘, the operators irr(p;)J~(pj)J-‘( 1 +x) 
and in(pi)Jn(pj)J-‘(1 - x) are projections. Therefore, the dimension of ‘I$ and ‘If; 
are simply the trace of the corresponding projections. Finally, n;j, defined as the pairing of 
pi @I pj with the index of ‘D, is given by 

nij = Index(Mij) 

= dim($) - dim(l-lb) 

= iTr[n(pi)J7n(pj)T’(l + x)] - &Tr[n(pi)Jn(Pj)J-‘(1 - x)] 

=Tr[X(n(pi)~n(pj)~-‘)l. 

Accordingly, we have obtained a simple formulation of Poincare duality for the finite spectral 
triples that can be stated as follows. 

Poincare’duality (Jinite case). The matrix defined by nij = Tr[x (n(Pi)Jn(pj)J-‘)I has 
nonvanishing determinant, where pi E M,,, (W) is a self-adjoint projection of minimal rank. 

2.4. First-order condition 

In ordinary differential geometry of a compact manifold endowed with a spin structure, 
the Dirac operator is a first-order differential operator. This can be formulated using com- 
mutation relations. Indeed, let V, be a compact manifold and E and F be smooth vector 
bundles over V. The space of sections r(E) and r(F) of the vector bundles turns out to 
be modules over Ccc(V) and one can easily characterize first-order operators. They are the 
differential operators D : T(E) + f(F) that fulfill 

ND, fit gl = 0 

for any couple of smooth functions f, g, E C”(V). This can also be extended to higher- 
order differential operator 27 is of order n if only if, for any f E C”(V)[D, f] is of order 
n - 1. 

However, this notation cannot be extended in direct manner in the noncommutative set- 
ting, In fact, we have to replace the modules by bimodules, and the functions in the double 
commutator by the left and right actions of the algebras. Since the latter commute, it does 
not matter whether the left or the right action appears first. 
First-order condition. [[D, n(x)], Jn(y)J-‘1 = 0 for any x, y E A. 

We can rewrite the previous relation using bimodule notations. It becomes 

WWY) = xm*Y) + Wllr)Y - XW$)Y 

for any @ E ‘FI and x, y E A. This is the usual definition of a first-order operator on a 
bimodule [13]. 
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2.5. So-reality 

The last four axioms define finite spectral triples. However, it turns out that the spectral 
triple of the standard model belongs to the smaller class of finite spectral triples that exclude 
Majorana particles. The operator .Y can be considered as a charge conjugation operator and 
it is natural to ask whether there are Majorana fermions. Spectral triples without Majorana 
fermions, such as the spectral triple of the standard model, are called SO-real spectral triples. 
They are defined by imposing a fifth axiom called. 
So-reality There is a hermitian involution y that commutes with x, 2, and n(x) for any 
x E A and anti-commutes with ,7. 

Since y is a hermitian involution, one has y * = y and y* = 1, so that one can decompose 
‘B into a direct sum of eigenspaces of y. The eigenspace corresponding to eigenvalue +l 
(resp. - 1) is spanned by particles (resp. antiparticles). The anticommutation rule between 
y and J teaches us that there is no particle that is its own antiparticle. In that case, ‘H is a 
direct sum, 

where P and A, refer to particle and antiparticle and L and R to left and right. Within this 
decomposition, rr and x are block diagonal, 

TC = diag(nf, n[, TC~, I$), 

x = diag(-4,_, I,, , -In, In,), 

with q_ = dim@) = dim(3-I;) and nR = dim(7ff;) = dim(F$). In a suitable basis, J’ 
and 2, are given by 

where C denotes the complex conjugation and M E M,, xnR (a=) is a mass matrix. The 
reality and first-order axioms are simply 

for any X, y, E A. Accordingly, particle and antiparticle spaces yield two bimodules, the 
latter being the opposite of the former in the sense that we exchange, up to complex con- 
jugation, the left and right actions. Moreover, the Dirac operator, when restricted to the 
particle bimodule, is a first-order operator, and it acts on antiparticle space as the complex 
conjugate. Therefore, the study of SO-real spectral triple can be reduced to study of the 
particle bimodule. 
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3. General solution 

The axioms of noncommutative turn out to be very simple in the finite case. Moreover, 
the algebra A is a direct sum of matrix algebras and it becomes possible to give a general 
solution to these axioms. 

3.1. The representation 

We first assume that the algebra is made of complex matrices with a complex representa- 
tion, i.e., a representation linear over the complex numbers, and then, we extend our results 
to the real case. Let A be a direct sum of complex matrix algebras, 

N 

A = @M,,(@). 
i=l 

To fix notations, we write elements x, y of the algebra as N-uples: x = (xi) t<i<~, with -- 
xi E kZni (C). The only irreducible representation of 44, (C) as a complex associative algebra 
is the fundamental one, so that n can be reduced as 

n(x) = @(g& 

where, form E N, I,,, denotes the identity of M,(C). If m = 0, we assume that I,,, is equal 
to zero and does not appear in the previous decomposition. 

The reality axiom provides us with two commuting representations of A, x H n(x) and 
y H ,7n(y)J7-‘, that can be simultaneously decomposed into irreducible ones. We end 
up with a matrix of multiplicities, m E MN(N), and we have 

Jn(y)t.7-l = @ z?li 8 If?l,j @ 'Ji. 

ij 

To this reduction of x is associated the corresponding decomposition of 7-Z as a direct sum 
of mutually orthogonal subspaces, 

where ‘Hij is isomorphic to C”I @ @“‘J @ @“j. The action of n(x) and Jrr(y)J-’ on ‘lij 
are xi 8 Zmij @ Z,,j and I,,, @ Zmij @ ;iTj , respectively. Accordingly, ‘Hij can be identified, as 
a bimodule, with mij copies of Mni X,,j (C), where the left and right actions are simply left 
and right matrix multiplications. 

In the real case, the situation is a bit more tricky. The algebras M,, (R) and M,, (W) have only 
one irreducible representation, the fundamental one, whereas M,,(C) has two inequivalent 
irreducible representations, the fundamental one and its complex conjugate. However, all our 
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formulae remain valid, provided the indices i and j label irreducible representations of A, 
In this case, xi denotes the image of x E A by the irreducible representation corresponding 
to i, and ‘Hij is isomorphic to C”r @ C”ij @@‘j, where ni is the dimension of the irreducible 
representation i . 

To introduce the matrix of multiplicities m, we only use the bimodule structure of 7-f. 
Thus, to any (A, f3)-bimodule M, where M is finite dimensional and A and B are direct 
sums of matrix algebras, we associate a matrix of multiplicity m by reducing simultaneously 
the left and right actions. The row index of m labels the irreducible representations of A 
whereas its column index labels those of B. Furthermore, it is possible to perform some 
algebraic operations on the matrices of multiplicities: 

- If M is a (A, B)-bimodule with matrix m, the opposite (B, A)-bimodule corresponds 
tom*. 

- If M and N are (A, B)-bimodules with matrices m and n, the direct sum M @N is a 
(A, B)-bimodule associated to the matrix m + n. 

_ If M is a (A, B)-bimodule with matrix m and N a (B, C)-bimodule with matrix n, the 
tensor product M 8~ N is a (A, C)-bimodule that corresponds to product mn. 

This is very simple case of the theory of composition of correspondences, where A, f3 
and C are general Von Neumann algebras [4,14]. It applies in particular for a SO-real spectral 
triple. The particle space is a bimodule associated to a matrix e, the antiparticle space is 
associated to e* and the total space corresponds to m = e + e*, so that the matrix of 
multiplicities is symmetric. 

Conclusion. A bimodule over a couple of semisimple involutive algebras is given, up 
to unitary equivalence, by a matrix of multiplicities whose entries are positive integers 
and whose row and column indices label irreducible representations of the corresponding 
algebras. 

3.2. The charge conjugation 

Given a (A, A)-bimodule 7-L with matrix m, it is natural to ask whether it corresponds to 
a real structure (i.e., we can pass from one representation to the other by means of a charge 
conjugation ,7 as above) or not. Furthermore, if J’ exists, it is interesting to determine its 
most general form. 

To answer these questions, let us first assume that if exists. The action of J on IJ E ?-I 
can always be written, in any basis, as J+ = Kq, where K is a matrix. J is an antiunitary 
involution if only if KK = K K* = 1. We must also have 

for any x E A. Accordingly, 

\j / j 
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and since K-’ = K*, 

K (‘Hij) = ‘Fiji. 

Therefore, the dimensions of Eij and ?fji are equal, or equivalently, the matrix of multi- 
plicities m is symmetric: WZij = WZji . 

Let US denote by Kij : ‘Hij -+ ‘Fiji the restriction of K. It must fulfill 

Kij(xi @ Im,, @ ‘nj) = (In, 8 zmI, 8 Xxj)Kij, 

Kij K,; = KijKij = 1. 

Consequently, if ey @ $r: @ ef is a basis of ‘li,j = @“I 63 C”‘II @ C”r , we have 

If i # j, the spaces 3-lij and ‘Fiji are distinct and it is always possible, by a suitable choice of 
the orthonormal basis (@) tXpcm,, , - - to have L;j@: = I+!$. When i = j, Lii is unitary, and 

we can choose an orthonormal basis such that L;i+Ji’ = e’@P$riT, with @ E R. However, 
since J is antilinear, 

J-(e’$V e:‘~Ilrl:~pP)=eilj,:)12K(~~~Ilrl:~e/)), 

=e -@p!2~~ @ Liig; @ $?, 

=e +i@:‘+z; @ F; @ $J) 

I’ 2 P so that the phases disappear if we make the replacement eiT + e’@l / $rij. Thus the action 
of Jis simply 

in all cases. 
Conversely, if the matrix of multiplicities m is symmetric, it is possible to define ,7 as 

above and such an antilinear operator fulfills all conditions imposed to charge conjugation. 
In the SO-real case, we have already proved that m = e + e’. In this case, we have 

two bimodules, one with matrix e and the other with matrix e*. If we define ,Z7 as the 
antilinear map that exchange the corresponding vectors of the two bimodules and y the 
hermitian operator that takes value 1 on the first bimodule and - 1 on the second one, they 
anticommute and the direct sum of the two bimodules corresponds, at the bimodule level 
(i.e., if we do not take care of x and 2% to a SO-real structure. 

Conclusion. A (A, A)-bimodule with matrix of multiplicities m is endowed with a real 
structure if only if m is symmetric. Moreover, if so, the charge conjugation is unique up 
to unitary equivalence, and it acts as above on tensor products. It corresponds to a SO-real 
structure if only if m can be written as m = e + e*, with e E MN (N), or equivalently, if all 

diagonal entries of m are even. 
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3.3. The chirality 

The chirality x commutes with n(A) and Jn(d)T', and is hermitian, so that it can 
be written as a block diagonal matrix, 

Since x = ‘& n(xP)Jrr(yP)J-‘, with xp, yp E A, xij is scalar matrix. Furthermore 

Xij = f 1 as fOllOWS from X 2=l.Wealsohave[X,J]=OsothatXij=xji. 
All the information contained in the matrices xij and mij can be cast in a symmetric 

matrix p E MN(Z) defined by 

I_Lij = Xijmij. 

We recover xij and mij as the sign and the modulus of pij. Accordingly, 

X = @S@(Pij)l,j 63 Ilwijl C3 Znj. 
ij 

To proceed further, let us assume that we are dealing eith the complex case. Thus all 
projections involved in Poincare duality are of trace 1, and the matrix of the intersection 
form nij is given by 

= signbij) TOi @ ‘Iwij/ 8 Fjl, 
= /Jdij. 

According to Poincare duality, the matrix p must be nondegenerate. 
Conversely, if we start with a symmetric and nondegenerate matrix /_L E M,v(E) (from 

now on we refer to it as the matrix of multiplicities instead of m), we recover the bimodule 
structure out of (pij 1 and the chirality x is obtained as 

X = @ &n(Pij)~~, C3 ‘I~ijI 8 In,. 

ij 

It fulfills all the requirements imposed by Poincare duality and by the orientability axiom. 
For instance, let us check that there are some elements, xP and yp, of A such that x = 

C,, nWUWyP>.7-‘. ‘I. o proceed, let us expand the matrix xii = sign&j) over rank 
one matrices as 

Xij = c x/q. 

P 

Thuswehavex = C, x(x~)J’~(~~)J-’ withxp = (xPli)rsijNandyp = (y[li)tiiiN. 
Accordingly, in the complex case, the bimodule structure and the chirality of a finite 

spectral triple are given, up to unitary equivalence, by a symmetric and nondegenerate 
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Table 1 

matrix I_L with entries in 72, which is the matrix of the intersection form. Furthermore, it 
corresponds to a SO-real structure if only if the intersection form is an even quadratic form. 
In the real case, it is still given by a symmetric matrix with entries in B whose indices label 
irreducible representations of A. However, it is no longer the intersection form and the signs 
of its entries satisfy additional requirements that are summarized, together with its relation 
with the intersection form, in Table 1. 

In this table, the indices i and j label, for matrices with entries in a given field, the simple 
algebras tha appear in the decomposition of A. In the complex case, the indices a! and /!l 
distinguish a representation from its complex conjugate. 

Conclusion. The bimodule structure and the chirality of a finite spectral triple are given, 
up to unitary equivalence, by a symmetries and nondegenerate matrix of multiplicities. The 
moduli of the entries of the matrix of multiplicities determine the bimodule structure and 
their signs yield the chirality. 

3.4. Dirac operator 

As we have already pointed out, a first-order operator D on a (A, Z?)-bimodule M is an 
operator that satisfies 

D(x@Y) = xD(llry) + DWcl)y - xD(+)Y 

for any $ E M, x E A and y E B. If we denote by LL(M) (resp. LR(M), LI(M)) the 
space of left A-linear operators (resp. right B-linear operators, first-order operators), we 
have 

LL(M) + LR(M) C Ll(M). 

If M is finite dimensional and if the algebras are direct sum of matrix algebras, the converse 
also holds 

LL(M) + LR(M) = LI(M). 
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To prove it, we decompose the representations associated with the left and right actions into 
irreducible ones and determine the corresponding matrix elements of D. 

In particular, this applies to the Dirac operator V of a finite spectral triple that can be 
written as 

V=VL+V)R 

with 

[DL,~(A)I= [DRY J’n(d)J--‘l=O. 

Moreover, since V anticommutes with x, so do VL and Vn. Accordingly, the previous 
decomposition is unique. Indeed, if we have, with obvious notations, 

v=v~+v;=v;+v;, 

then 

v~-v~=v~-v~ 

commutes with both n(d) and Jn(d),T’. Thus, it commutes with x, and since it also 
anticommutes with x, it vansihes and the previous decomposition is unique. Furthermore, 
V commutes with J, so that, using the unicity, we have 

VL = gV&--‘. 

Consequently, the Dirac operator of finite spectral triple is given by 

V=A+J’AJ-‘, 

where A is a hermitian operator on ‘FI, which commutes with Jn (d)J- ’ and anticommutes 
with x . For a SO-real spectral triple, it is sufficient to take into account the particle bimodule. 
The Dirac operator can be written as a direct sum, 

v=vp@vA, 

where Vp is a first-order operator of the particle bimodule. Using the unicity, we have 

VA = SSp. 

The decomposition of V remains valid for the bimodule structure of the particle space, 

‘Dp=Ap+d~ 

with 

[AA,xA(A)I = LAP, np(d)l=O. 

Let us end this section by three remarks that are useful when this construction is applied 
to model building in gauge theory. First of all, we can give an explicit expression of A in 
terms of the Dirac operator. Indeed, 

V = - dgr&W’D, n(g*)l + dg~(gP~(g*), 
s J 
G G 
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where dg is the Haar measure on the group G of unitary elements of A. Due to the trans- 
lational invariance of the Haar measure, 

s dgn(gPDn(g*), n(x) = 0 
G 1 

for any x E A. Furthermore, it follows from the reality axiom and the first-order condition 
that 

[ 
s 

dgn(g)P, n(s*)l, J-n(x)J- = 0 
G I 

for any x E A. Thus, it is a decomposition of the Dirac operator into left and right module 
homomorphisms that anticommute with x . Using the unicity, we have 

A = - 
s 

dgn(g)P, n&*)1. 
G 

This expression of A is very useful since it means that A is a l-form. 
Secondly, the operator A satisfies very simple commutation and anticommutation rela- 

tions and we can give its explicit form in terms of complex matrices. Let 

be the decomposition of the Hilbert space where i and j label irreducible representations of 
A, and Pij’li -+ ‘H,ij be the orthogonal projection onto ‘lij . We define the matrix elements 
ofdby 

A;; = Pk,APi*j. 

The latter are given by 

A;( = Sji Mik,j 8 In,, 

where Mik,j E Mpijn,xpkjnk (@) is such that Mik,j = Mii j if pijpkj < 0, and zero 
otherwise. This gives us a complete description of the operator A parametrized by complex 
matrices, and we recover the Dirac operator as D = A + JAJ-’ . 

Thirdly, notice that most of the time, the Dirac operator 23 only appears in noncommutative 
geometry via the commutation relation [D, n(x)], x E A. Since V = A + JAJ-’ and 
[JAJ-’ , n(x)] = 0 for any x E A, one can replace 2, by A in any commutation relation 
with an element of the algebra. This simplifies, for finite spectral triples, many computational 
involving the Dirac operator, such as, for instance, the computation of the metric on the 
space of pure states of A and its perturbation by inner fluctuations [7]. 

Finally, we use this decomposition to compute the l-forms. We recall that the space of 
1 -forms QA (A) is defined by 
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Q;(d)= 

In particular, 
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c rc(S)[D, n(yP>] with xP, yP E A . 
P 1 

A = - s dgn(g)U’, +*)I, 

is a l-form. Moreover, if w E D&d and X, y E A, we have n (x)w~(y) E $,(A) and 
$,(d) is a bimodule and thus contains the bimodule generated by A. Conversely, if we 
express any element w E @,(A) using commutators with D and then, replace 2, by A, 
we see that $,(A) is included in the bimodule generated by A. Accordingly, the space of 
l-forms Q&(d) is the bimodule generated by A, and this allows us, using the expression 
of A in terms of complex matrices, to determine Q&,(d) in Section 5. 

Conclusion. A finite spectral triple is given, up to unitary equivalence by a symmetric 
and nondegenerate matrix of multiplicities and a hermitian operator A commuting with the 
right action and anticommuting with the chirality. 

4. Classification and diagrams 

In the following sections, we develop a diagrammatic approach to finite spectral triples. 
We first associate to any finite triple a diagram and then, we classify and construct all such 
triples within this approach. 

4.1. Diagram associated with a spectral triples 

Let (A, ‘H, D) be a finite spectral triple whose matrix of multiplicities is p. To each 
couple (i, j) of irreducible representations of A such that pij # 0, we associate a vertex of 
type 0 if pij < 0 and a vertex of type $ if pij > O.We relate the vertices (i, j) and (k, 1) 
if only if the corresponding matrix element of the Dirac operator, 

vk! = p..vp* 
‘J ‘I kl ’ 

does not vanish. According to the axioms, the diagram has the following properties. 

- 
- 

- 

(i, j) is related to (k, 1) if and only if (k, I) is related to (i, j) as follows from V = D*. 
To simplify, we draw only one edge between two vertices. 
Since 2) and 3 commute, the diagram is symmetric with respect to its first diagonal. 
We can only relate vertices of different types, as follows from the anticommutation 
relation of x and 27. 
As a consequence of the first-order condition, all edges are either vertical or horizontal. 
Vertical edges correspond to matrix elements of A and the horizontal ones to those of 
Jag-‘. 
For instance, let us build the diagram pertaining to the standard model. The algebra A is 

d=W@@@M3(C). 
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Since it is SO-real, we use the notations introduced in Section 2.5. The particle Hilbert 
spaces ‘HL and 7-L; are spanned, for Nf = 3 families of fermions, by 

and 

where we have omitted the color index for quarks. The corresponding antiparticles form a 
basis of the article spaces 7-@ and ‘7-$. Within these bases, the representation is given by 

r&a) = diag(a @ 13Nf 1 a 8 INr), 

n;(b) = diag@l3N,, b13Nt, &IN&, 

j-&b, c) = di%(hN, @ c, bbNf>, 

nk(b, c) = diag(h, 69 c, blN,h 

where (a, b, c) E W @C @ M3(C). The mass matrix M is 

Mu @ 13 0 

M= 0 Md @’ 13 

0 

with 

Mu = diag(m,, m,, ml, 

Md = km diaghf, m,, mb), 

Me = diagb, m,, m,>, 
where m,, stands for the mass of particle p and VC~ is the Cabibb+Kobayashi-Maskawa 
mixing matrix. 

Accordingly, the matrix of multiplicities is, in the basis (C, I-U, a=, M3(C)), 

00 11 

l-l 1 0 

and the corresponding diagram is given by Fig. 1. 
For particles, vertices and edges are above the first diagonal. The three vertices @ cor- 

respond to the singlets of isospin un, dR and en and the two vertices @ are associated 
with the leptonic and quarkonic isodoublets. The edges between them correspond to the 
matrix elements M,, , Md and Me. Since it is SO-real, there is a complete symmetry between 
particles and antiparticles so that the same holds for the antiparticles. In fact, for a general 
SO-real spectral triple, the matrix of multiplicities can always be written as 
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Fig. 1. Diagram of the standard model. 

The Dirac operator is a first-order operator of the particle bimodule and the complex con- 
jugate on the antiparticle bimodule. Thus, the corresponding diagram is constructed out of 
the vertices of the matrix E and then symmetrized with respect to the first diagonal. 

The diagram of the standard model is not connected and has four connected subdiagrams 
that are intimately tied up with the “noncommutative coupling constants” X, y, X and y, 
introduced in [ 151. In general, the latter is positive definite hermitian matrix Z that commutes 
with n(d), J'n (d)J-' and V, so that it yields a scalar product on the differential algebra. 
The first two commutation relations allow us to write Z as a block diagonal matrix. 

ij 

Accordingly, to each vertex (i, j) is associated a positive definite hermitian matrix Zij . The 
last commutation relation, expressed using matrix elements as 

relates the matrix elements Zij associated with vertices belonging to the same connected 
component. 

The diagrams provide us with a natural classification of finite spectral triples. As we shall 
see in the sections devoted to applications, the major feature of the underlying Yang-Mills- 
Higgs model can be seen on the diagram. However, a commutative spectral triple, with the 
algebra CN and a noncommutative one, whose algebra is a direct sum of N simple matrix 
algebras, can yield the same diagram. From the point of view of noncommutative geometry, 
this is not surprising since two such algebras are Morita equivalent and thus completely 
indistinguishable in Hoschild homology and K-theory. Besides, using the general construc- 
tion, based on a connection V on a finite projective module I, detailed in [7], we can pass 
from a commutative spectral triple to a noncommutative one which are both associated with 
the same diagram. 

4.2. Spectral triple associated to a diagram 

Suppose we are given an algebra d and a symmetric matrix of multiplicities p whose 
indices label irreducible representations of A. We require that it fulfills the constrints listed 
in Table 1 and that its intersection form nij be nondegenerate. We represent it on the plane 
as the vertices of a diagram as we did in the previous section. Then we relate the vertices of 
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different types by vertical and horizontal lines such that the resulting diagram be symmetric 

with respect to its first diagonal. 
To each vertical link between (i, k) and (j, k), with i > j, we associate a matrix A4ij.k E 

A4 p,kn,xp jknj(c>. If j > i, we set MTi,k = M,; k and A4i.j.k = 0 in all other cases. The 
matrix elements of the operator A are obtained as 

In particular, the diagonal elements Ai; always vanish since we cannot relate a vertex to 
itself. We symmetrize this expression with respect to J to get the compelte Dirac operator 

To obtain an explicit form of D in terms of complex matrices, we introduce a basis 
(D$> 1 5,,5n,r,, , for example the canonical one, and we write Mij,k as 

Thus, the matrix elements of the Dirac operator are 

D;; = 8k/ C EC 8 Mfj.k @ Ink + 6i.j C In, 8 Bf,,i 8 Ez,, 
P (I 

The representation, the Hilbert space and the operators ,7 and x are constructed out of the 
matrix of multiplicities by means of the formulae we gave throughout Sections 3.1-3.3. 

5. Applications to particle models 

Finite spectral triples are very simple examples of noncommutative geometries corre- 
sponding to finite spaces. The latter can be considered as the internal spaces involved in 
Yang-Mills-Higgs theories. More precisely, if we tensorize a finite spectral triple with the 
one associated to an ordinary manifold of dimension n, we obtain a noncommutative ge- 
ometry of dimension n that gives rise to a Yang-Mills theory with spontaneous symmetry 
breaking. This section is devoted to this kind of applications. We first recall some gen- 
eral aspects about gauge theory in noncommutative geometry and then apply our previous 
classification to investigate some features of the model we obtain. 

5. I. General aspects 

It follows from general principles of noncommutative geometry [7], that the symmetries 
of a spectral triple (A, ‘FI, D) are described by *-automorphisms of the algebra A. among 
them, there are, in the noncommuttive case, inner automorphisms. The latter are defined, 
as x E A H gxg-’ E A, for any element g of the group G of unitary elements of A. 
If the algebra is finite dimensional, the inner automorphisms are the only automorphisms 
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of A up to a discrete subgroup. Thus, they are the only possible continuous symmetries 
of a finite noncommutative space. To describe a symmetry of the corresponding space, the 
group G is represented on the Hilbert space ‘FI via the map g H n(g)Jn(g)J-‘. The 
inner automorphisms are in complete analogy with gauge transformations. 

In the framework of noncommutative geometry, X is the fermionic Hilbert space and V 
the Dirac operator. Accordingly, the free fermionic action is defined as 

sF[*Y] = (p, D*) 

for any P E 7-f. Under a gauge transformation, 

* + Q)J-+%P~, 

the fermionic action becomes 

(ul, (D + n(g*)P, +)I + J~k*wD, +)lPw, 

where we have used the axioms to rewrite 

n(g*)~n(g*)~-‘~,n(g)~~(g)~-’ 

as 

D + Jr(s*)[~, n(g)1 + Jn(g*)r’D, 7QnT’. 

To ensure gauge invariance, we introduce, as usual in field theory, a gauge field A. The 

latter are hermitian l-forms and can be written as 

A = c +p>[~, n(yP)l 
P 

with xp, yJ’ E A. The transformation law of A is 

A + n(g)A4g*) + n(g)P, n&*)1 

so that the interacting fermionic action 

SF[‘& Al = W, CD + A + Z4,T’)PI) 

is gauge invariant. Starting with the spectral action princple, “the bosonic action only de- 
pends on the spectrum of D + A + JAJ-I”, it is possible to write a bosonic action for the 
field A. With a suitable spectral triple, it yields, as first terms of heat kernel expansion, the 
bosonic sector of the standard model coupled to gravity [9]. 

To construct a Yang-Mills-Higgs theory, we consider a noncommutative geometry (A,, 
lYr, D,,) obtained as a product of the ordinary geometry of space-time by a finite noncom- 
mutative one, described by a finite spectral triple (A, FL, D), that corresponds to the internal 
degrees of freedom of the fields. (A,, tit, DD,) is a tensor product of spectral triples, 

At = C”(V) c+ A, 

76 = L2(V, S) 63 ‘H, 

27 = ivl”(& + q) 63 I + y5 @ D, 
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where w@ is the spin connection introduced to take into account the coupling of fermionic 
fields with gravity. Therefore, the gauge fields, A, are given by 

At = iy@(A, + JA,J-‘) + y5 c3 (H + JH,T’), 

where ACL is a vector field with values in the Lie algebra 4 of the group of unitary elements of 
A, and H is a scalar field that is also a hermitian l-form with respect to the finite geometry. 
The corresponding fluctuations of the metric [7] are 

Using the decomposition 2, = A + JAJ-' , the scalar part can be written as 

&#J + JYP) 

with 4 = A + H. Moreover, since A is a l-form, 4 is a gauge field and it transforms as 

4 -+ Q)&r(g”). 

The interaction of fermions with scalars can be written using $ as 

Thus, 4 is a matrix valued scalar field that contains all Higgs fields, and the previous 
interaction term corresponds to Yukawa couplings. 

Finally, following the spectral action principle, the Higgs potential V(4) only depends 
on the spectrum of 4 + J@J-’ and thus can be expanded as 

V(4) = c - azn Tr(4 + J$J-‘)2n 
n (2fl)! 

’ since (4 + J&T > 2n+1 is traceless. In dimension 4, we restrict our study to polynomial 

potential of degree 5 4, so that 

where a(), a2 and a4 are real numbers related to other parameters of the theory using the 
spectral action principle applied to the full Dirac operator. 

5.2. The gauge group 

The gauge transformations correspond to the inner automorphisms of the finite dimen- 
sional algebra A. Accordingly, the gauge group is the group G of unitary elements of A. 
Since A is a direct sum of matrix algebras over the fields R, C and E-U, the gauge group 
is a direct product of the simple Lie groups SO(n), U(n) and P(n). As a consequence, 
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noncommutative geometric models can have all classical semi-simple compact Lie group 
as a gauge group, except those corresponding to the five exceptional Lie algebras [ 161. 

However, the gauge group only corresponds to G up to some U(1) factors. Indeed, the 
elements of G appear in gauge transformations as n(g)Jrc (g)J-’ so that we have to divide 
G by the kernel of the representation g H n (g)Jn (g)J- t to obtain the gauge group. The 
latter only contains U(1) factors, that correspond to the U(1) whose representations only 
appear on diagonal vertices in the diagram associated to (A, K, 27). these U( 1) gauge fields 
also disappear from the action because the action only depends on n(Ap) + J’rr(A@)J-’ 
and they are the solutions of the equation n(Ap) + JIT(A~)J-’ = 0. 

For example, let us consider a model with fermions in the adjoint representation. It is built 
with A = M,,(C) and 3-1 = M,, (C). The representation of A on X is the left multiplication of 
matrices and 3 is given by the adjoint. Obviously, it corresponds to a diagram with a single 
vertex so that its gauge group is SU(n) instead of U(n) = SU (n) x U( 1). Moreover, from 
vertex uniqueness, we see immediately that it can only afford fermions with same chirality 
and there is no possible link, thus no Dirac operator and no Higgs field. Corresponding to 
the simplest diagram, this model can be considered as the minimal one. It can be extended 
to semi-simple algebras, with bimodule structure given by left and right multiplication. It 
yields a diagonal matrix of multiplicities and a diagonal diagram. Accordingly, all U(1) 
disappear but there is still no possible links, thus no Higgs fields and no spontaneous 
symmetry breaking. For the standard model (see Fig. l), the diagram has no diagonal 
elements. Therefore, the unwanted U( 1) in the group of unitary elements of 0-U @ @ @ M3 (C) 
does not disappear and has to be eliminated by hand. 

In more sophisticated models, we often have to remove by hand some U(1) factors for 
physical reasons such as anomaly cancellation (of course, it may also be necessary to remove 
non-Abelian Lie subgroups but this will change too much the noncommutative geometric 
setting of the model). This is achieved by means of a unimodularity condition, that can be 
defined as a set of linear conditions imposed at the Lie algebra level in order to eliminate the 
unwanted U(1) factors. For instance, if we want our model to be gauge anomaly free, we 
impose that the generators of the Lie algebra of the gauge group satisfy the cubic relation 

Tr(Ta{Tb, TC}) = 0. 

Since the representation we deal with are rather simple (tensor products of fundamental 
ones or their complex conjugates), the gauge anomaly cancellation can be expressed as 
constraints on the matrix of multiplicities of the model. For instance, let us consider an 
SO-real spectral triple with the complex algebra 

and a complex representation. Taking into account the occurrence of left- and right-handed 
fermions, the condition of anomaly is simply 

Tr,[x(n(x) + 3n(x>~7-‘>~1 = 0 forx E G, 
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where 6 is the Lie algebra of the gauge group and Trn denotes the trace restricted to 
particle space. To express it in terms of the matrix of multiplicites, we write any xi E u(n;) 
(Lie algebra of U(ni)) as xi = hi + ui, with hi E su(n;) and ui E u(l). Since we 
only want to remove some U( 1) factors, we require that this condition be satisfied at least 
for all non-Abelian factors. It yields three different type of constraints on the matrix of 
multiplicities E 

c nj(Cij - Eji) = 0 if ni >_ 3, 

c nj(Eij - Eji)(Ui - Uj) = 0 if ni 2 2, 

c ninj(Cij - Eji)(Ui - Uj)" = 0. 
The first equations are rigid constraints that must be satisfied by the matrix of multiplicites. 
The second ones are linear equations for the ui ‘s so that they may be taken as unimodularity 
conditions. The last one is a cubic relation on the “hypercharges”, as in the standard model. 
It is a well-known fact that for the standard model, anomaly cancellation is equivalent to 
the unimodularity condition [ 171. In other words, if the second relations are satisfied, the 
third one also is. Obviously, this is not a general feature of the models. Moreover, for the 
standard model, the first relation is empty since the color sector is vectorial. 

We derived these relations for complex representations of complex algebras, but their 
general structure remains unchanged in the real case, since unitary elements of real and 
quaternionic matrices are traceless as well as their cubes. We still end up with three types 
of constraints: some rigid ones on the matrix of multiplicities, some linear equations for the 
U( 1) factors and a cubic relation for the “hypercharges”. 

There is an other reason to remove an unwanted U( 1). Since the Hilbert space must be 
equipped with a representation of an associative algebra, it is not possible, in general. to 
build a singlet under a given gauge group. To proceed, we introduce an additional summand 
C in the algebra, so that this singlet sits in a representation of the associative algebra @. 
Then, we remove the corresponding U( 1) factor from the gauge group and we end up with 
a singlet under gauge transformations. 

5.3. The fermionic representation 

Within the diagrammatic approach, to each couple (i, j) of irreducible representations 
is associated a vertex (i, j) of the diagram. This vertex corresponds to the Hilbert space 
‘l;j appearing in the decomposition of ti.‘Hij is endowed with a bimodule structure given 
by i (left action) and 7 (right action). The restriction of n(g)Jn(g)J-’ to E;j is gi @ 
II,, j I 63 gj, SO that vectors of Eij transform in the tensor product i @ 7 of the corresponding 
representations i and j of the simple factors of gauge group, with multiplicity (pi_, 1. If the 
two factors are distinct, the tensor product is irreducible as representation of G and, for each 
simple factor it is just the fundamental one or its complex conjugate. Otherwise, the tensor 
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product is not irreducible. For SO(n) and S’(n), the tensor product of two fundamental 
representations yields the adjoint one, the symmetric and traceless one and a singlet. For 
W(n) the situation is different, since we can tensorize the fundamental one and its complex 
conjugate, and we decompose the resulting product using Young boxes. In the analysis, 
we do not care about the unimodularity conditions. However, the latter are simply linear 
conditions imposed on the U(l), and do not change the general structure of the fermionic 
representation. 

Moreover, to each vertex is associated a sign corresponding to the eigenvalue of x on 
7fij. Accordingly, fermions of Xij are chiral ones, right-handed if pij > 0 and left-handed 
if pij < 0. As a consequence of the symmetry of pij and the rules of Table 1, fermions of 
‘lij and ‘Fiji have the same chirality as well as those of ‘Xij and ‘?I!c and those of 7$ and 

7-tTj. 
The charge conjugation J maps %!ij onto ‘Fiji , SO that, if i # j, fermions of ‘Hji are the 

antifermions of those of ‘Hij and Hij does not contain Majorana particles. Otherwise, tiii 
is stable under charge conjugation, and there may be Majorana fermions. In general, there 
always are Majorana fermions in ‘Hii, that transforms as the tensor product i @I i, except 
when the spectral triple is SO-real. 

Many general properties of the fermionic sector, such as chirality, charge conjugation 
and transformation laws can be read on the diagram. As an example, let us try to build 
the SU(5) grand unified model. To proceed. we need two representations of SU(5): the 5 
for right-handed fermions and the 10 for left-handed ones. The 3 can be obtained with the 
algebra MS(C) CD @ and the corresponding bimodule structure is given by the couples (3, 1) 
or (3, 7). At the gauge group level, we remove the unwanted U(1) with a unimodularity 
condition, as well as the one arising from A45 (C). If we tensorize the 5 by itself we get the 10 
and the 15. Thus, if we remove the fermions sitting in the 15, it works perfectly well from 
the point of view of representation theory. In the basis composed by the representations 
MS(@), MS(C) and @, the matrix of multiplicities reads, with Nf generations, 

CL = Nf 

The corresponding diagram is given in Fig. 2. 
To end this section, let us note that it is impossible to build the SO( 10) model out of a 

spectral triple. Indeed, it requires the 16 (spinorial representation of SO( 10)) that cannot be 
obtained as a subrepresentation of a tensor product of the fundamental one or its complex 
conjugate. - 

3-O - + + 
Fig. 2. Diagram of grand unified W(5) model. 
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5.4. The scalar$elds and their representations 

To determine the Higgs fields and their transformation laws, we first have to compute 
explicitly the space of l-forms. We recall that A is a l-form and that the space of 1 -forms 
Q’ -D(A) is the bimodule generated by A. Thus, if (E{) 1 <PQrl,,,i is a basis of M,,,X,,, (C), 
the l-forms 

x(E,qdx(E,;) 

span the space L$, (A). 
However, they are not, in general, linearly independent. To find a basis of @,(A), we 

must have a closer look at the matrix structure of A. To simplify our discussion, let us 
assume that we are dealing with a complex spectral triple. In this case, it is useful to 

choose (E~)I<~<~~~, as the canonical basis of Mni Xn, (C). We denote it by Et!‘, and the 
multiplication rule is simply 

E!hECd ~6. 6 Eeb ‘J kl Jk bc II * 

As in Section 4.2, we rewrite the matrix elements of A as 

Therefore, 

n(E;jb)An(E;id = c P$(Ef @ MEk 8 Ink)Pjk. 

k 

To construct a basis, let us consider the matrices (MGbk)r<kcN as a column vector M$‘. -- 
The vectors Mzb span, when a and b vary, a vector space Vij whose dimension is denoted 

by rij. Out of the vectors (M,u:‘), we choose a basis of Vij that we denote by (M;) I s,?(,.,, . 

The components ML$,k of M[ yield a basis 6,:b’p of Q&(d) defined by 

Accordingly, 52F (A) is a vector space of dimension xii ni rijnj, and it can be parametrized 
by complex matrices as 

In the real case, it works in much the same way if i and j label irreducible representations 
of A. However, in the quaternionic case we must tensorize the elementary matrices with 
Pauli matrices. We also have some additional constraints between the matrices @ij such as 
% = $ij, where 7 denotes the representation complex conjugate of i and 8 is either the 
complex or the SU(2) conjugation. 
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This applies in particular for the Higgs field Cp that can be parametrized by matrices 4;. 
as 

Since C$ is hermitian, we have 

Under a gauge transformation, 

4 --+ rW&(g-‘), 

the matrix valued scalar fields q$ transform as 

where, as usual, gi denotes the image of g through the irreducible representation labeled by 
i . Accordingly, the fields q$. transforms as the tensor product i @ 7 of the two irreducible 

representations i and 3. 
On the diagram, the fields c#$ correspond to vertical links between the rows i and j. 

Since such links cannot occur within the same row, the Higgs fields do not transform as the 
tensor product i @ 7, but all other tensor products are allowed. In particular, we never end 
up with Higgs fields in the adjoint representation. Therefore, it is not possible to build the 
conventional SU(5) grand unified model in our framework. Although we proved that it can 
work at the level of the fermionic representation, to break SU(5) down to SU(2) x U(1) x 
SU(3), we need some Higgs fields sitting in the adjoint representation of SU(5). 

The Yukawa coupling between 4 and @‘, 

can be expressed in terms of the fields c#$ if we expand P over the tensor products we 
introduced in Section 3.2. As a results, it appears the Yukawa couplings between the chiral 
fermions of the vertices (i, k) and (j, I) and the scalar fields $ij or $kkl correspond to the 
vertical or horizontal edges that can occur between the vertices (i, k) and (j, I). 

According to the spectral action principle, the Higgs potential is a linear combination of 
terms like 

Using the explicit form of 4 in terms of the Higgs fields q$, the previous function can be 
expanded over monomials like 

Tr($:, . . .4(:, > ‘W$Ij4:., . . . $tj, ) 

with r + s = n. the coefficient of this monomial in the Higgs potential depends on the 
matrices Mi: k , . It corresponds canonically to a loop of length n contained in the diagram, 
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made of r horizontal and s vertical edges. When we are dealing with loops, we must be 
aware that we have actually two links between the vertices (i , k) and ( j , E), one for M;j, k and 
the other for Mji,k, even if, for simplicity, we represent only one. For instance, the sequence 
of vertices, 

G3 k) + (j, k) + (i, k), 

must be considered as a loop. We refer to this kind of loops, obtained by going forwards 
and backwards along a tree, as trivial loops. The previous example corresponds, at the level 
of the Higgs potential, to the monomial 

which is a mass term. In general, mass terms only corresponds to trivial loops. Nontrivial 
ones, such as the sequence 

(i, k) -+ (j, k) + (j, 0 --, (i, I) + (i, k), 

with i # j and k # 1, can only occur for n >_ 4, i.e., for interacting terms. 

6. Conclusion 

Starting with the notion of finite spectral triple derived from general axioms, we give all 
possible noncommutative geometries on finite spaces. The latter are given, up to unitary 
equivalence, by a symmetric and nondegenerate matrix of multiplicities p with entires in 
Z and an operator A. The underlying bimodule structure is encoded in the modules of 
the entries of the matrix of multiplicities whereas their signs correspond to the chirality. 
The matrix is symmetric if only if it corresponds to a real structure, and it follows from 
Poincare duality that it is nondegenerate. Finite spectral triples are classified and constructed 
using diagrams whose vertices correspond to their matrix of multiplicities and whose edges 
represent the structure of the Dirac operator. 

Finite spectral triples are also tools to build some Yang-Mills-Higgs models, and a 
general feature of the resulting models can be summarized as follows: 
- The gauge group is, up to some U( 1) factors, a direct product of the simple Lie groups 

SO(n) and SP(n). 
- Fermions transform as tensor products of two fundamental representations (or their com- 

plex conjugate) of the simple factors. Multiplets of chiral fermions correspond to the 
vertices of a diagram labeled by couples of fundamental representation or their complex 
conjugate. 

_ The edges of the previous diagram correspond naturally to Yukawa couplings. The result- 
ing Higgs fields also transform as tensor products of two fundamental representations (or 
their complex conjugate) of the simple factors of the gauge group, except those leading 
to the adjoint one. 

- The Higgs potential, computed with the spectral action principle, can be expanded over 
monomials that correspond to loops of the diagram. 
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This study confirms, in a more general setting, some earlier results pertaining to the standard 
model [18], its U(1) extensions [19] and grand unified theories [20]. Furthermore, such a 
classification has also been worked out independently by Paschke and Sitarz in [21], putting 
emphasis on Hopf algebra symmetries. 
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